13C nuclear magnetic resonance studies of the biosynthesis by Microbacterium ammoniaphilum of L-glutamate selectively enriched with carbon-13.
نویسندگان
چکیده
13C NMR of isotopically enriched metabolites has been used to study the metabolism of Microbacterium ammoniaphilum, a bacterium which excretes large quantities of L-glutamic acid into the medium. Biosynthesis from 90% [1-13C]glucose results in relatively high specificity of the label, with [2,4-13C2]glutamate as the major product. The predominant biosynthetic pathway for synthesis of glutamate from glucose was determined to be the Embden Meyerhof glycolytic pathway followed by P-enolpyruvate carboxylase and the first third of the Krebs cycle. Different metabolic pathways are associated with different correlations in the enrichment of the carbons, reflected in the spectrum as different 13C-13C scalar multiplet intensities. Hence, intensity and 13C-13C multiplet analysis allows quantitation of the pathways involved. Although blockage of the Krebs cycle at the alpha-ketoglutarate dehydrogenase step is the basis for the accumulation of glutamate, significant Krebs cycle activity was found in glucose grown cells, and extensive Krebs cycle activity in cells metabolizing [1-13C]acetate. In addition to the observation of the expected metabolites, the disaccharide alpha, alpha-trehalose and alpha, beta-glucosylamine were identified from the 13C NMR spectra.
منابع مشابه
Indexing tricarboxylic acid cycle flux in intact hearts by carbon-13 nuclear magnetic resonance.
Although the tricarboxylic acid (TCA) cycle is the prime means of carbon metabolism for energy generation in normal myocardium, the noninvasive quantification of TCA cycle flux in intact cardiac tissues is difficult. A novel approach for estimating citric acid cycle flux using 13C nuclear magnetic resonance (NMR) is presented and evaluated experimentally by comparison with measured myocardial o...
متن کاملResolving confounding enrichment kinetics due to overlapping resonance signals from 13C-enriched long chain fatty acid oxidation and uptake within intact hearts.
PURPOSE Long chain fatty acid (LCFA) oxidation measurements in the intact heart from 13C-NMR rely on detection of 13C-enriched glutamate. However, progressive increases in overlapping resonance signal from LCFA can confound detection of the glutamate 4-carbon (GLU-C4) signal. We evaluated alternative 13C labeling for exogenous LCFA and developed a simple scheme to distinguish kinetics of LCFA u...
متن کاملConformational analysis of the Saccharomyces cerevisiae tridecapeptide mating pheromone by 13C,15N rotational-echo double resonance nuclear magnetic resonance spectroscopy.
The solid-state conformation of [Nle12]alpha-factor, the Saccharomyces cerevisiae tridecapeptide mating pheromone (WHWLQLKPGQPNleY), was investigated by 13C,15N rotational-echo double resonance (REDOR) nuclear magnetic resonance spectroscopy (NMR). Previous high-resolution NMR studies of [Nle12]alpha-factor in solution revealed a transient Type II beta-turn spanning residues 7-10 of the peptide...
متن کاملاستفاده از روش رزونانس مغناطیسی هسته 1H و 13C در مطالعه کربن آلی خاک تحت پوشش درختان جنگلی
Soil organic matter is the largest source of organic carbon in the soil surface which played an enormous role in restoring balance, environmental sustainability, soil elements and climatic conditions. Organic materials influence physical, chemical and biological properties of soil and thus soil fertility directly and indirectly. The amount, type and composition of organic matter are different i...
متن کاملInsights into the metabolic response to traumatic brain injury as revealed by 13C NMR spectroscopy
The present review highlights critical issues related to cerebral metabolism following traumatic brain injury (TBI) and the use of (13)C labeled substrates and nuclear magnetic resonance (NMR) spectroscopy to study these changes. First we address some pathophysiologic factors contributing to metabolic dysfunction following TBI. We then examine how (13)C NMR spectroscopy strategies have been use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 257 3 شماره
صفحات -
تاریخ انتشار 1982